
Compile and execute CoBOL with GraalVM Com-
munity Edition and GnuCOBOL
Christophe Brun, PapIT (christophe.brun@papit.fr)

GraalVM the polyglot Virtual Machine by Oracle
The GraalVM supports various languages, Java, JavaScript, Ruby, Python, R,
WebAssembly, C/C++1. In another document, Oracle explains the VM can be an
interpreter from native codes using compiler called a Low-Level Virtual Machine
(LLVM)2. Those native codes being C, C++, FORTRAN, Rust, COBOL, and Go.
It is now getting even more exiting! As a former mainframe/CoBOL developer,
I would like to see those billions lines of CoBOL modernized in a more open
environments.

CoBOL modernization
This article’s goal is to explain how the GraalVM could be running CoBOL
on pretty much any platform without package manager, only with the
GraalVM and its LLVM package. IT departments, mainly in financial
institutions and governments are desperately seeking CoBOL and mainframe
experts but the lack of training course and the repelling Z/OS TSO environment
are not encouraging vocations. Another major issue with those technologies
resides in the costs of mainframe licenses. I think, hope, both could be solved
porting existing CoBOL in modern environments. In case you don’t know,
rewriting the code and just shutting down the mainframes is not an option, see
this great article.

Native code in GraalVM

If not already installed, GraalVM installation is described on their website.
Executing native code require a GraalVM package call llvm-toolchain. On my
system I already have clang and l li so I created symlinks g-clang and g-lli. I prefer
to create a symlink with a different name for clang and l li executables rather than
extending the path which will required the use of update-alternatives. A great
medium post from an Oracle collaborator detail the GraalVM llvm-toolchain.
The installation gives the following LLVM version:

chrichri@chrichri-x470aorusultragaming:~/cobinatcci$ g-lli --version
LLVM (http://llvm.org/):

LLVM version 10.0.0-4-g22d2637565-bg83994d0b4b
Optimized build.
Default target: x86_64-unknown-linux-gnu

1https://www.graalvm.org/docs/why-graal/
2https://www.graalvm.org/uploads/graalvm-language-level-virtualization-oracle-tech-

papers.pdf

1

https://thenewstack.io/cobol-everywhere-will-maintain/
https://www.graalvm.org/docs/getting-started/
https://www.graalvm.org/docs/reference-manual/languages/llvm/#llvm-toolchain
https://medium.com/graalvm/graalvm-llvm-toolchain-f606f995bf
https://www.graalvm.org/docs/why-graal/
https://www.graalvm.org/uploads/graalvm-language-level-virtualization-oracle-tech-papers.pdf
https://www.graalvm.org/uploads/graalvm-language-level-virtualization-oracle-tech-papers.pdf

Host CPU: znver1

GnuCOBOL

Using Flex for lexical parsing and Bison a compiler-compiler, GnuCOBOL can
transpile CoBOL to C. It can directly compile CoBOL to an executable using
your platform toolchain but it is not our goal here, as we want to execute it with
GraalVM. There are many CoBOL compilers out there. This one implement
major part of CoBOL 1985, 2002 and several extensions of other compilers3. This
compiler and its library libcob can easily be compiled with formerly installed
GraalVM Compiler. The latest release of the code can be found on their official
SourceForge site. Auto configure the build with the provided shell script:

sh ./autogen.sh

Configure the built with the GraalVM Clang compiler (and
no Berkeley DB support in our example):

./configure --with-cc=g-clang --without-db

Build and install as usual:

make install

The installation gives me the following GNU CoBOL version:

chrichri@chrichri-x470aorusultragaming:~/cobinatcci/gnucobol-code-r4210-tags-gnucobol-3.1.2$ cobc --version
cobc (GnuCOBOL) 3.1.2.0
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Keisuke Nishida, Roger While, Ron Norman, Simon Sobisch, Edward Hart
Built Mar 07 2021 21:44:51
Packaged Mar 07 2021 20:31:04 UTC
C version "9.3.0"

Compiling CoBOL C intermediate, LLVM intermediate representation
and its execution

Let’s use the Mandelbrot set implemented in CoBOL as an example, see man-
delbrotset.cbl:

identification division.
program-id. MandelbrotSet.

data division.
working-storage section.
01 ResolutionX constant 240.

3https://sourceforge.net/projects/gnucobol/

2

https://open-cobol.sourceforge.io/
https://sourceforge.net/p/gnucobol/code/HEAD/tree/trunk/
https://sourceforge.net/projects/gnucobol/

01 ResolutionY constant 100.
01 RealPlaneMin constant -2.5.
01 RealPlaneMax constant 0.8.
01 ImaginaryPlaneMin constant -1.25.
01 ImaginaryPlaneMax constant 1.25.
01 ProportionalX pic S99V9(16) usage comp-5 value zeros.
01 ProportionalY pic S99V9(16) usage comp-5 value zeros.
01 IterationsMax constant 60.
01 Threshold constant 10000.

01 ScreenX pic 999 usage comp-5.
01 ScreenY pic 999 usage comp-5.
01 MathPlaneX pic S99V9(16) usage comp-5.
01 MathPlaneY pic S99V9(16) usage comp-5.

01 PointX pic S9(7)V9(8) usage comp-5.
01 PointY pic S9(7)V9(8) usage comp-5.
01 XSquared pic S9(10)V9(8) usage comp-5.
01 YSquared pic S9(10)V9(8) usage comp-5.
01 Iteration pic 999 value zero.
01 TempVar pic S9(5)V9(8) usage comp-5.

procedure division.

compute ProportionalX = (RealPlaneMax - RealPlaneMin) /
(ResolutionX - 1)

compute ProportionalY = (ImaginaryPlaneMax - ImaginaryPlaneMin) /
(ResolutionY - 1)

perform varying ScreenY from 0 by 1 until ScreenY is equal to
ResolutionY

compute MathPlaneY = ImaginaryPlaneMin +
(ProportionalY * ScreenY)

perform varying ScreenX from 0 by 1 until ScreenX is equal to
ResolutionX

compute MathPlaneX = RealPlaneMin +
(ProportionalX * ScreenX)

move zero to PointX
move zero to PointY
multiply PointX by PointX giving XSquared
multiply PointY by PointY giving YSquared

3

perform with test after varying Iteration from 0 by 1
until Iteration >= IterationsMax or

XSquared + YSquared >= Threshold
compute TempVar = XSquared - YSquared + MathPlaneX
compute PointY = 2 * PointX * PointY + MathPlaneY
move TempVar to PointX
compute XSquared = PointX * PointX
compute YSquared = PointY * PointY

end-perform

if Iteration is equal to IterationsMax
display "*" with no advancing

else
display " " with no advancing

end-if
end-perform

display " "

end-perform
stop run.
end program MandelbrotSet.

Producing the C intermediate Using GnuCOBOL, the C intermediate can
be produced with the following command:

cobc -C -x mandelbrotset.cbl

The project should look like:

benchmark
|- bin
|- mandelbrotset.c
|- mandelbrotset.c.h
|- mandelbrotset.c.l.h
|- mandelbrotset.cbl

Compiling C to LLVM Intermediate Reprensentation One point not
completely clear from their documentation is the benefit of LLVM and how to
execute code in GraalVM not just creating a binary like GNU CoBOL easily
does. Using Clang to directly compile CoBOL into a executable is possible if
you don’t forget to include the libcob dependency with -lcob. But the real benefit
of LLVM comes from the Intermediate Representation (IR) code that can run or
compile on any platform running LLVM or in this case GraalVM LLVM.

Compiling to IR command is:

g-clang mandelbrotset.c -S -emit-llvm -o "bin/mandelbrotset.ll"

4

The project should look like:

benchmark
|- bin
| |- mandelbrotset.ll
|- mandelbrotset.c
|- mandelbrotset.c.h
|- mandelbrotset.c.l.h
|- mandelbrotset.cbl

Execution in the LLVM interpreter The LLVM interpreter l li command
can run the IR loading the libcob dependency:

g-lli -load /usr/local/lib/libcob.so ./bin/mandelbrotset.ll

comparison with the regular LLVM

The same version of LLVM can be downloaded from their github repository,
under the l lvmorg-10.0.0 tag. It was compiled using Ninja, with the assertions
disabled, as a release to get the same build as the GraalVm one. The compiling
command is therefore:

mkdir build
cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=off
ninja

This give a similar LLVM interpreter as the GraalVM one:

chrichri@chrichri-x470aorusultragaming:~/cobinatcci$ lli --version
LLVM (http://llvm.org/):

LLVM version 10.0.0
Optimized build.
Default target: x86_64-unknown-linux-gnu
Host CPU: znver1

The previously generated IR code can be run with this LLVM interpreter:

lli -load /usr/local/lib/libcob.so ./bin/mandelbrotset.ll

Execution time with both LLVM interpreter is similar:

mandelbrotset>
LLVM ***

real 0m0.356s
user 0m0.352s
sys 0m0.007s
GRAAL LLVM ***

real 0m0.371s

5

https://ninja-build.org/

user 0m0.335s
sys 0m0.014s

Other programs indicated the GraalVM LLVM interpreter is always slightly
slower. 1.39 slower in the worst case found with a program computing the first
1899 prime numbers. See the corresponding github repository for more details
on this benchmark. Christophe Brun, https://www.papit.fr/

6

https://github.com/phe-sto/CoBOL-GraalVM
mailto:christophe.brun@papit.fr
https://www.papit.fr/

	Compile and execute CoBOL with GraalVM Community Edition and GnuCOBOL
	GraalVM the polyglot Virtual Machine by Oracle
	CoBOL modernization
	Native code in GraalVM
	GnuCOBOL
	Compiling CoBOL C intermediate, LLVM intermediate representation and its execution
	comparison with the regular LLVM

