
Python is just an idiom
Christophe Brun, PapIT (christophe.brun@papit.fr)

Abstract
This article and code repository aim to highlight that Python is just an idiom, a
syntax. A langage is just a langage. It is not directly executed.

It is easily highlighted when the same code is executed with compltly different
performances depending on their implementation.

Regardless of what can be said by those many experts benchmarking langages
for any purpose. The same Python code will be here executed in different
environnements, in their latest versions, highlighting performance differences
and potential outcomes.

Those environnements are just a set of relevant Python environments but are
not by far exhaustive.

An eye-opener was the 2015 Green Code Lab Challenge1, 82 teams in 8 countries,
where the langages where ranked the following:

1. Python
2. C++
3. Python
4. Javascript
5. Python
6. C++
7. Python
8. Python
9. Python

10. Python

Each team has a raspberry as server model, running Greenspector. Keep in
mind: Lot of teams don’t success in having measures or functional application.
The reasons : no agility for certain teams, tunnel effect with a rush the Friday,
application not robust. . . i.e. the challenge was functionally complex enough to
use simple idiom like Python.

A common misconception to compare langages without
carrying about the runtime environnement
Many articles, including academics, are comparing the efficiency of a program-
ming langage under multiple aspects, such as execution time, energy, etc. Some
of them not even mentioning the environment and the langage implementation

1https://medium.com/eco-design-of-software-by-greenspector/analyse-of-results-of-
green-code-lab-challenge-2015-ed04907c01c5

1

https://medium.com/eco-design-of-software-by-greenspector/analyse-of-results-of-green-code-lab-challenge-2015-ed04907c01c5
https://medium.com/eco-design-of-software-by-greenspector/analyse-of-results-of-green-code-lab-challenge-2015-ed04907c01c5


like João Saraiva et al.2. This raise many questions for a langage such as Python
having numerous implementations, 3 of them, CPython, Cython, Pypy being
really mainstream. This paper measure the CPU time and state the Energy =
Power x Time, but not sure, they refer to article stating the contrary.

Alibabacloud performed a survey on energy efficiency, without detailed method3

Overwhelming results in Google:

Multiplying the wrong way
120000000 * 5

The multiplication above is almost instantaneous in the CPython interpreter,
hopefully.

from dis import dis

2https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf
3https://www.alibabacloud.com/fr/knowledge/tech/10-programming-languages

2

https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf
https://www.alibabacloud.com/fr/knowledge/tech/10-programming-languages


def add5(n):
s = 0
for _ in range(n):

s += 5
return s

add5(120000000)
dis(add5)

The above program is doing the same plus trying to disassemble it. This is
obviously slower when interpreted in CPython. But a smart compiler is probably
able to optimize those addition turning it to a multiplication. Let’s try different
Python implementations compiled or interpreted to look for major performance
differences in the same langage.

Cython4

A static compiler for Python programming langage. Many would say a transpiler
to C/C++. The code is then compiler, here with clang.

Compilation

cython --embed -o multiply.c -3 multiply.py
clang -O3 multiply.c -o multiply -I/usr/include/python3.10 -lpython3.10

Environnement

chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ cython -V
Cython version 0.29.32
chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ clang -v
Ubuntu clang version 14.0.0-1ubuntu1
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin
Found candidate GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/10
Found candidate GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/11
Selected GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/11
Candidate multilib: .;@m64
Selected multilib: .;@m64

Speed and disassembly
4https://cython.org

3

https://cython.org


chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ time ./multiply
600000000

real 0m6,646s
user 0m6,505s
sys 0m0,012s

Pypy5

• A fast, compliant alternative implementation of Python. . . On average,
PyPy is 4.5 times faster than CPython. Use a JIT (Just In Time) Compiler.
Guido van Rossum would have said at 2015 EuroPython that Pypy is the
workaround to GIL issues .

Slightly faster than CPython but no disassembly.

Environnement

Python 3.9.12 (05fbe3aa5b0845e6c37239768aa455451aa5faba, Mar 29 2022, 08:15:34)
[PyPy 7.3.9 with GCC 10.2.1 20210130 (Red Hat 10.2.1-11)] on linux

Speed and disassembly

chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ time ./pypy3.9-v7.3.9-linux64/bin/python3 multiply.py
5 0 LOAD_CONST 1 (0)

2 STORE_FAST 1 (s)

6 4 LOAD_GLOBAL 0 (range)
6 LOAD_FAST 0 (n)
8 CALL_FUNCTION 1

10 GET_ITER
>> 12 FOR_ITER 12 (to 26)

14 STORE_FAST 2 (_)

7 16 LOAD_FAST 1 (s)
18 LOAD_CONST 2 (5)
20 INPLACE_ADD
22 STORE_FAST 1 (s)
24 JUMP_ABSOLUTE 12

8 >> 26 LOAD_FAST 1 (s)
28 RETURN_VALUE

real 0m0,413s
user 0m0,372s
sys 0m0,025s

5https://www.pypy.org/

4

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwihpqX6ja77AhUX8LsIHRkvAHIQFnoECAUQAQ&url=https%3A%2F%2Flwn.net%2FArticles%2F723716%2F&usg=AOvVaw07eqriHjK5dt4pidA6W2f_
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwihpqX6ja77AhUX8LsIHRkvAHIQFnoECAUQAQ&url=https%3A%2F%2Flwn.net%2FArticles%2F723716%2F&usg=AOvVaw07eqriHjK5dt4pidA6W2f_
https://www.pypy.org/


CPython6

Original implementation from 1991 by Guido van Rossum.

Environnement

Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

Speed and disassembly

chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ time python3 multiply.py
5 0 LOAD_CONST 1 (0)

2 STORE_FAST 1 (s)

6 4 LOAD_GLOBAL 0 (range)
6 LOAD_FAST 0 (n)
8 CALL_FUNCTION 1

10 GET_ITER
>> 12 FOR_ITER 6 (to 26)

14 STORE_FAST 2 (_)

7 16 LOAD_FAST 1 (s)
18 LOAD_CONST 2 (5)
20 INPLACE_ADD
22 STORE_FAST 1 (s)
24 JUMP_ABSOLUTE 6 (to 12)

8 >> 26 LOAD_FAST 1 (s)
28 RETURN_VALUE

real 0m8,465s
user 0m8,442s
sys 0m0,016s

GraalVM Python7

The polyglot JVM by oracle. It aims to move as many possible application
to Oracle GraalVM in cloud services, CoBOL, CPP, Java, Python. Python in
GRaalVM can access AWT! On performance side, according to Oracle there is
On average, Python in GraalVM (entreprise) is 8.92x faster than CPython

Environnement

chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ ./graalvm-ce-java11-linux-amd64-22.3.0/graalvm-ce-java11-22.3.0/bin/graalpy

6https://python.org
7https://www.graalvm.org/python/

5

https://python.org
https://www.graalvm.org/python/


Python 3.8.5 (Thu Oct 20 10:52:00 UTC 2022)
[Graal, GraalVM CE, Java 11.0.17] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Speed and disassembly

chrichri@chrichri-HKD-WXX:~/python-is-a-syntax$ time ./graalvm-ce-java11-linux-amd64-22.3.0/graalvm-ce-java11-22.3.0/bin/graalpy multiply.py

real 0m3,078s
user 0m8,520s
sys 0m0,434s

The dis disassembly appears to be missing. Somehow it look mocked as it can
be imported but nothing is ever returned.

Performance discussion

Implementations are ordered by user time.

Not obvious as the disassembly of CPython Pypy where pretty much the same
but there is a 20 time speed improvement with Pypy. Pypy JIT understand at
some point this addition is in fact a multiplication.

In the same langage, Python, the CPython can be more than 20 time slower
than Pypy implementation:

6



Implementation real user Ratio user time to faster
Pypy 0,413 0,372 1
GraalVM 3,078 8,52 7,45
Cython 6,653 6,645 16,11
CPython 8,465 8,442 20,5

Relevance of comparing a langage to another
The famous website landing page statement is unambiguous Which programming
language is fastest? Let’s go measure . . . benchmark programs !. This website
only compares different version of same implementation. It should probably
better compare different implementations. Plus the CPU is the usr+sys time
giving a false sense the smallest time is the fastest. Different figures from the Java
source8 and Python 3 source9 Mandelbrot computation from the benchmark
game are plotted (Warning time axis in logarithmic scale due to GraalVM
Python). Implementations are ordered by user time.

It highlights the two Java implementations consume less resources but from
real time point of view, both CPython and Cython are faster. Which fact is
completely hidden by the benchmark results. Python is also the slower when
running in Graal VM.

8https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/
mandelbrot-java-1.html

9https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/
mandelbrot-python3-7.html

7

https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/mandelbrot-java-1.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/mandelbrot-java-1.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/mandelbrot-python3-7.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/mandelbrot-python3-7.html

	Python is just an idiom
	Abstract
	A common misconception to compare langages without carrying about the runtime environnement
	Multiplying the wrong way
	Cython
	Pypy
	CPython
	GraalVM Python
	Performance discussion

	Relevance of comparing a langage to another


