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Abstract
Modular exponentiation: (aˆb) mod n can be computed using square and multiply
exponentiation algorithm1. The present algorithm in this repository describes a
faster variant stopping the computation when intermediary modulus is 0.

Observations
The modulus of a number by another one that begins with the same
digits is equal to the modulus of a number made of the missing digits
of the first one by the second one

2555 mod 25 = 55 mod 25

The number begins 25, so the modulus of 2555 by 25 is the same as the modulus
of 55 by 25. Both are 5.

1Christof Paar, Jan Pelzl, Understanding Cryptography, section 7.4
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Why?

Because 2555 = 25 * 100 + 55 and modulus of 25 * 100 by 25 is 0, so the
modulus of 2555 by 25 is the same as the modulus of 55 by 25.

A generalization of the previous observation is that a modulus of a
number is equal to the modulus of this number plus another number
which modulus is equal to 0

5055 mod 25 = 55 mod 25

So can we compute only the smaller number modulus to be faster?

Yes, using the square and multiply modular exponentiation algorithm, if the
current one is equal to 0, the computation can stop, and the algorithm can return
0. There is no point in multiplying or squaring (just a particular multiplication)
again, the modulus will be 0 anyway.
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Python implementation
Prototyping is done in Python for its ease of development and testing. The
corresponding module is pysma.py. The reference implementation is pow Python
built-in method.

C implementation
For a portable implementation and low-level profiling of the executables, C is
used to test than new implementation. It is a transpile of the Python code. The
classic square and multiply modular exponentiation is implemented in sma.c.
The fast square and multiply modular exponentiation is implemented in fsma.c.
Again the reference implementation is pow Python built-in method.

uint64_t fsma(uint64_t base, uint64_t exp, uint64_t mod) {
uint64_t res = 1;

while (exp > 1) {

// If the exponent digit is 1, then multiply
if (exp & 1) {

res = (res * base) % mod;

// If an intermediate result is zero, we can return 0.
// The result will be zero anyway
if (res == 0) {

return 0;
}

}

// If the exponent digit is 0, then square
base = (base * base) % mod;
exp >>= 1;

}

return (base * res) % mod;
}

Software dependencies

Compilation and tests need LLVM, cmake, Clang/cc/gcc or any compiler, cmake,
Valgrind and Python3 for tests and analysis.

Compilation

Both sources are compiled as an executable to be used in CLI and shared library
to be loaded using Python for testing purposes. The compilation is done using
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the following command:

$ make all

Testing

The tests are done using a number inferior to a C unsigned 64-Bit integer,
the type used in C programs, as base, exponent, and modulus. Running the
corresponding Python module should end in return code 0 if the result is the same
as the reference implementation pow otherwise an assertionError is raised.

Test results

Both sma.c and fsma.c compiled shared libraries returned results equal to the
reference implementation pow for all the numbers inferior to a C unsigned 64-Bit
integer tested.

Hypothesis
The FSMMEA algorithm is generally faster than the SMA algorithm because of
the computation ending sooner in case a temporary modulus is equal to 0. The
impact of comparing the intermediary modulus to 0 is negligible.

Performance analysis
Counting CPU instructions using Valgrind

The binaries are compiled Clang 15.0.7 for target x86_64-pc-linux-gnu with
-pg -DNDEBUG options. As expected, comparing the temporary remainder to
0 has a cost in terms of instructions. When no intermediate remainder is 0,
the computing function itself execute 10.5% more instructions. In this case the
percentage is constant.

The classic implementation counts 723 instructions:

$ valgrind --tool=callgrind --toggle-collect=sma ./sma-prof <<<"97032574325492 4294965003 3536"
==1559769== Callgrind, a call-graph generating cache profiler
==1559769== Copyright (C) 2002-2017, and GNU GPL'd, by Josef Weidendorfer et al.
==1559769== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==1559769== Command: ./sma-prof
==1559769==
==1559769== For interactive control, run 'callgrind_control -h'.
1040
==1559769==
==1559769== Events : Ir
==1559769== Collected : 723
==1559769==
==1559769== I refs: 723
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The currently described implementation counts 799 instructions:

$ valgrind --tool=callgrind --toggle-collect=fsma ./fsma-prof <<<"97032574325492 4294965003 3536"
...
==1559866== I refs: 799

When there is an intermediary remainder equal to 0, the number of instructions
is reduced by a proportion that changes depending on the number of square and
multiply left to compute. Here above an example with a 85% decrease of the
number of instructions executed.

The classical implementation counts 583 instructions:

$ valgrind --tool=callgrind --toggle-collect=sma ./sma-prof <<<"294 98725745 98"
...
==1577575== Events : Ir
==1577575== Collected : 583
==1577575==
==1577575== I refs: 583

The currently described implementation counts 86 instructions:

$ valgrind --tool=callgrind --toggle-collect=fsma ./fsma-prof <<<"294 98725745 98"
...
==1577460== Events : Ir
==1577460== Collected : 86
==1577460==
==1577460== I refs: 86

Measuring time using clock()

More instructions are required but instructions time cost can vary by several
orders of magnitude. On both x86_64 Intel and RISC-V 64 machines, the
time cost of the comparison is negligible. The programs sma-chrono (classical
implementation) and fsma-chrono (this implementation) are used to measure
the time cost in seconds using time.h library clock() function. Both functions
are executed 10 millions times to spread the possible time variations. The results
when no intermediary remainder is equal to 0 are almost the same:

# Details of the x86_64 machine
$ uname -a
... 6.3.1-060301-generic ... SMP PREEMPT_DYNAMIC ... x86_64 GNU/Linux
# Both programs are executed 10 millions times in the same time without
# intermediary remainder equal to 0
$ ./fsma-chrono <<< "2945 98725745 98"
59
Time: 3.793387
$ ./sma-chrono <<< "2945 98725745 98"
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59
Time: 3.862384

Quite often this new implementation is slightly faster than the classical one, on
both platforms under test. But it is surely not relevant on a Linux desktop PC.

When there is an intermediary remainder equal to 0, the time cost of the
comparison is significant:

# Details of the x86_64 machine
$ uname -a
... 6.3.1-060301-generic ... SMP PREEMPT_DYNAMIC ... x86_64 GNU/Linux
# Significant time difference when an intermediary remainder is
# equal to 0
$ ./fsma-chrono <<< "294 98725745 98"
0
Time: 0.044720
$ ./sma-chrono <<< "294 98725745 98"
0
Time: 3.798237

The new implement represent ~1.1% on x86_64 of the time of the classical
one, therefore the name of the algorithm is Fast Square and Multiply Modular
Exponentiation Algorithm Modular Exponentiation. . .

As expected the same computations highlight a slightly lower gain time on a less
complex ISA like RISC-V. The binaries were compiled for target riscv64-redhat-
linux GCC 12.1.1. But still superior to ten folds :

# Details of the RISC-V 64 machine
$ uname -a
... 5.5.0-0.rc5.git0.1.1.riscv64.fc32.riscv64 #1 SMP ... riscv64 GNU/Linux
# Both programs are executed 10 millions times in the same time without
# intermediary remainder equal to 0
$ ./fsma-chrono <<< "294 98725745 98"
0
Time: 0.472115
$ ./sma-chrono <<< "294 98725745 98"
0
Time: 5.238649

Likewise, even on a more simple architecture like RISC-V, the cost of comparing
the remainder to zero is negligible :

# Details of the RISC-V 64 machine
$ uname -a
... 5.5.0-0.rc5.git0.1.1.riscv64.fc32.riscv64 #1 SMP ... riscv64 GNU/Linux
# Significant time difference when an intermediary remainder is equal to 0
$ ./fsma-chrono <<< "294 98725745 985"
4
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Time: 5.322550
[root@fedora-riscv fsma]# ./sma-chrono <<< "294 98725745 985"
4
Time: 5.346250

Analysing the premature exit of the algorithm

The proportion of instructions executed is not constant, nore the time, and the
chance of having an intermediary remainder equal to 0 is not constant either.
It surely increases with the number of square and multiply to compute. To
measure those phenomenons, the C is not adapted. A more high-level language
like Python with its data science tools is needed.

The frequency of the premature exit, i.e., intermediary remainder equal to 0 of
the algorithm does not change with the base. But it changes with the modulus.
The following graph shows the frequency (linear regression to suppress variations
du to sampling) of premature exit of the algorithm function of the base.

But the frequency of premature exit tend to diminish with the modulo getting
greater.

7



8


	Fast square and multiply modular exponentiation (FSMMEA), Christophe Brun, PapIT SASU
	Abstract
	Observations
	The modulus of a number by another one that begins with the same digits is equal to the modulus of a number made of the missing digits of the first one by the second one
	Why?
	A generalization of the previous observation is that a modulus of a number is equal to the modulus of this number plus another number which modulus is equal to 0
	So can we compute only the smaller number modulus to be faster?

	Python implementation
	C implementation
	Software dependencies
	Compilation
	Testing
	Test results

	Hypothesis
	Performance analysis
	Counting CPU instructions using Valgrind
	Measuring time using clock()
	Analysing the premature exit of the algorithm



